Distinct Distances with Different Metrics

This document provides an example project of Adam, with too much information.
To get a first impression of the project, you might prefer to only read the first couple
of pages and quickly skim the rest. You can also write to Adam for more information.

The project is a follow-up to a previous undergraduate research project mentored
by Adam. That project was not only published in a non-undergraduate journal, but
also won a $1, 000 young researcher award of the journal, for researchers under 35 (all
participants were under 25!)

1 The distinct distances problem

The distinct distances problem was introduced by Erdds in a famous 1946 paper
[2]. Consider a set P of points in the plane. Every pair of points from P have
some distance between them. We are interested in the set A(P) of the distances
spanned by all such pairs. For example, let P be the house-shaped set of five points
depicted in Figure 1. Assuming that the side of the square is of length 2, we have

A(P) = {2,v/2, V8, VI0}.

Figure 1: A house-shaped set of five points. If the side of the square is of length 2 then the
diagonal of the square is of length /8 and each side of the roof is of length /2.

Note that every distance appears once in A, no matter how many pairs span it.
More formally, A(P) is not a multiset. That is why we call A(P) the set of distinct
distances. Frdos asked for the minimum number of distinct distances that can be
determined by a set of n points in the plane. In other words, he asked for

D(n) = min [A(P)|.
To clarify, the minimum is over all sets P of n points in R2.

For example, n points equally spaced on a line determine n — 1 distinct distances
(see Figure 2). Thus, we have D(n) <n — 1.

Let P be the set of vertices of a regular polygon with n sides, as in Figure 2. It
is not difficult to show that D(P) = [(n —1)/2].
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Figure 2: Left: Points equally spaced on a line. Right: Vertices of a regular n-gon.

In Erdds’s original paper, he considered the \/n x y/n integer lattice
P={(a,b) : 1<a,b<+/n}.

The number of distances that are determined by this set is an immediate corollary of
a result from number theory.

Theorem 1.1. (Landau and Ramanujan) There ezists a positive ¢ € R such that
the number of positive integers smaller than n that are the sum of two squares is

approzimately ¢ - n/+/logn.

Every distance in the y/n X \/n integer lattice is the square root of a sum of two
squares between 0 and n. Thus, Theorem 1.1 implies that the number of distinct
distances in this case is about ¢ - (n/y/logn).

Theorem 1.2 (Erd6s [2]). There exists ¢ > 0 such that D(n) < c¢-n/+/logn for
every n.

Erdés conjectured that the bound in Theorem 1.2 is tight. That is, that every set
of n points in the plane determines at least c¢- (n/y/logn) distinct distances, for some
constant ¢ > 0. Here is a first example for deriving a lower bound for D(n).

Claim 1.3. D(n) > \/(n — 2)/2.

Proof. Let P be a set of n points and consider two points v, u € P. Let d, denote the
number of distinct distances between v and P\ {v}. Note that the points of P\ {v}
are contained in d, circles that are centered at v. We denote this set of circles as
I',. We define d,, and I',, symmetrically. Each of the n — 2 points of P \ {v,u} is
contained in the intersection of a circle from I', and a circle from I", (an example
is depicted in Figure 3). Two circles intersect in at most two points, so the number
of such intersections is at most 2|T',||T",| = 2d,d,. This implies that 2d,d, > n — 2.
When d, < y/(n —2)/2 and d,, < \/(n — 2)/2, we have that 2d,d, < n — 2, which is
a contradiction. Therefore, max{d,,d,} > \/(n —2)/2. O

A large number of works have been dedicated to the distinct distances problem
and its many variant. Over the decades, stronger and stronger lower bounds for D(n)
have been derived. In 2010, Guth and Katz [4] almost completely proved Erdds’s
conjecture.



Figure 3: The points of P \ {v, u} are contained in the intersections of I';, and T';,.

Theorem 1.4 (Guth and Katz). There exists ¢ > 0 such that D(n) > c¢-(n/logn).

Note that there is still a gap of v/logn between the bounds of Theorem 1.2 and
Theorem 1.4. While this problem is almost completely settled, there are many other
wide open distinct distances problems, most of which were also posed by Erdés. For
example, Erdés originally asked for the minimum number of distinct distances n
points can determine in RY, while the problem is almost settled only in R?. The
minimum number of distances spanned by n points in R? is still wide open.

As another example, Erdds asked if, for every set of n points in R?, there exists
a subset of about y/n points where no distance appears more than once. That is, for
the subset, all distances are distinct. This conjecture is still wide open. For many
other open distinct distances problems, see [6].

2 Distinct distances with other metrics

Why are distinct distances problems so difficult? One philosophical answer is that,
while these are combinatorial problems, they are actually about studying the under-
lying geometry. In particular, small changes in the geometry may completely change
the behavior of the problem. This implies that, to solve a problem, one has to use
properties of the specific geometry that is considered. In this project, we study how
different metrics (distance functions) change the behavior of the problem.

In the preceding section, we were using the Fuclidean metric. That is, we defined
the distance between two points (a,, a,) and (b,, b,) to be

\/(az = bz)? + (ay — by)*.

While this is the most common distance metric, there are many others in mathematics.

In the following, we only consider metrics in the plane. For simplicity, we consider
each metric by stating the distance between the points and (ay, a,) and (b,,b,). For
a real number p > 1, the metric induced by the ¢, norm is

(lae = bg|” + [ay — by|p>1/p-

For brevity, we refer to such a metric as the ¢, metric. Note that the ¢, metric is the
Euclidean distance.



The ¢; metric is the distance function |a, — a,| + b, — b,|. This is sometimes
called the Manhattan distance, since one can think of it as the number of blocks to
cross when traveling between two points in Manhattan. If you are on the corner of
3rd Avenue and 25th Street and wish to travel to the corner of 5th Avenue and 34th
Street, then you need to travel |25 — 34| 4 |3 — 5| = 11 city blocks.

The wunit circle of a metric is the set of points that are at a distance of 1 from
the origin (0,0). Under the Euclidean distance, the unit circle is a circle of radius 1
centered at the origin. Under the ¢; metric, it is a square with side length 2 standing
on a vertex (see Figure 4).

(i) (i1) (iii)
Figure 4: (i) The ¢2 unit circle. (ii) The ¢; unit circle. (iii) Distances in ¢ can be imagined as
traveling only with vertical and horizontal lines.

The larger p is, the more dominant max{|a, — b,|,|a, — b,|} is in the ¢, metric.
Under the ¢; metric, both |a, — b,| and |a, — b,| have the same influence on the
distance. Under the ¢, metric, the larger of the two already matters more when
computing the square root. Under the /3 metric, the larger difference matters even
more, and so on. For this reason, the ¢, metric is defined as max{|a, — b,|, |a, — b,|}.

The ¢; and /., metrics are somewhat degenerate. Mathematicians are usually
interested in metrics with a unit circle that is strictly convex.? This is the case for
all ¢, metrics except for ¢; and {.,. For example, Figure 5 depicts the unit circle of
the /5 metric.

A function p : R? — R is a norm if it satisfies the following properties:

e If p(a) =0 then a = (0,0).
e Every a € R? and k € R satisfy p(k - a) = |k| - p(a).
e Every a,b € R? satisfy p(a + b) < p(a) + p(b).

If p: R -5 R then A : R? x R? — R defined as A(a,b) = p(a — b) is a metric. We
say that A is the metric induced by the norm ¢,. Not every metric is induced by a

IThese are the locations of the CUNY Graduate Center and CUNY’s Baruch College. Adam
constantly needs to travel between these two locations. When checking this on a map, you’ll find
out the this is a lie and Adam actually travels more than 11 blocks.

2That is, for any point p,q on the unit circle, the line segment between p and ¢ intersects the
unit circle only at its endpoints. The interior of this line segment is completely in the interior of the
unit circle.
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Figure 5: The /5 unit circle.

norm. However, in our project we are mainly interested in metrics that are induced
by norms.

Convex Centrally symmetric Not

Figure 6: Examples of convex and centrally symmetric shapes.

The unit circle of any metric is a closed curve that is centrally symmetric about
the origin. That is, for every pair of opposite directions v and u, when shooting rays
from the origin in directions v and u, both rays hit unit circle after traveling the same
distance. The unit ball of any metric is convex. That is, for any two points p,q on
the unit ball, the line segment between p and ¢ is fully contained in the unit ball.
Every convex region whose boundary is centrally symmetric around the origin is the
unit ball of a unique norm. The boundary is then the corresponding unit circle.

The following result is from [1].

Theorem 2.1. For most metrics in R? (induced by norms), the minimum number of
distinct distances determined by n points is very close to n.

In this introductory document, we do not rigorously define “most metrics.” We
only state that the set of metrics that do not satisfy the above has measure zero in
the space of all metrics. (When considering only metrics induced by norms.)

While Theorem 2.1 provides information about distinct distances in most metrics,
it is not constructive. We know that the ¢, s and /. metrics are exceptions to the
statement of Theorem 2.1, all having smaller numbers of distances. We do not yet
know of nice metrics that satisfy the statement of Theorem 2.1.

The dissertation of Julia Garibaldi® [3] was about distinct distances in non-
Euclidean metrics. The dissertation studies various proofs for the case of the Eu-
clidean distance and adapts those to other metrics.

3The first graduate student of Terrence Tao.



The project. Garibaldi proved that, for any 1 < p < oo, we have that D(n) > c-n*/®
for the ¢, metric. A previous undergraduate project mentored by Adam [5] improved
the bound to D(n) > c¢-n%7, for integer p. Now, Adam is interested in working on
the case of non-integer p. He has concrete ideas for how to potentially address this
problem, but prefers not to share those here. We could also explore related problems,
such as different types of metrics.
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