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Ballistic annihilation is a one-dimensional interacting particle system introduced by physicists
in the 1980s as a caricature of more complex systems exhibiting anomalous compound-decay [6].
Particles are placed throughout the real line and assigned velocities at which they move from the
onset. When two particles collide, they mutually annihilate and are removed from the system.
While a variety of velocity distributions have been studied, what has become the canonical way
to assign velocities is independently from {−1, 0, 1} where velocity 0 is assigned with probability
p ∈ [0, 1), and velocities ±1 symmetrically with probability (1− p)/2. We will refer to this system
as symmetric three-velocity ballistic annihilation (BA).

Figure 1. A graphical representation of symmetric three-velocity ballistic annihila-
tion with p = 1/4. Time is the y-axis and space is the x-axis.

Many intriguing features of BA were inferred by physicists in the 1990s [4, 9]. Perhaps the most
fundamental quantity is the critical initial density of velocity-0 particles below which no particles
persist for all time:

pc = sup{p : no particles survive}.
It was conjectured that pc = 1/4 for BA, but at the time was never resolved in a rigorous probabilistic
manner. A major difficulty is that the order in which collisions occur is sensitive to perturbations;
changing the velocity of a single particle can have a cascading effect. This makes it difficult to
compare processes with different parameters. In 2018 there was a breakthrough from Haslegrave,
Sidoravicius, and Tournier that rigorously proved pc = 1/4 [7]. Seeking to better understand the
reach, as well as limits, of the approach in [7], Junge and various coauthors have been working to
extend this result to more general systems [8, 2, 5].

Inspired by earlier work from physicists [3], Benitez, Junge, Lyu, Redman, and Reeves extended
BA dynamics to include reactions that produce new particles [1]. Denote left-moving, right-moving
and stationary particles by ~•,~•, and •̇, respectively. Fix parameters 0 ≤ a, b, x < 1 with a+ b ≤ 1.
Using the notation [• − • =⇒ Θ, θ] to denote a collision resulting in an outcome Θ ∈ {•̇,~•, ~•,∅}
with probability θ, we define three parameter coalescing ballistic annihilation (TCBA) as
the family of systems with collision rules:
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See Figure 2 for an example. Note that BA is the special case a = b = x = 0.
The main result in [1] was a general formula for the analogue of pc for TCBA. The formula is not

obviously inferred from the model definition and underscores the complexity of these coalescing
systems.
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Figure 2. Graphical representations of TCBA (left) versus BA (right). Despite the
same initial configuration, markedly different outcomes can occur.

Theorem 1. For any TCBA it holds that

pc(a, b, x) =
1− b(1− x)

4− 3x− (a+ b)(1− x)
.

A further direction is to study coalescing ballistic annihilation with the additional coalescing
reaction:

[•̇ −~• =⇒ •̇, y] and [~• − •̇ =⇒ •̇, y](1)

for some parameter y ∈ [0, 1] with 0 ≤ x+ y ≤ 1. In words, stationary particles survive collisions
with probability y. This reaction was not included in [1], because it induces an otherwise not-present
asymmetry in the analysis. The specifics are more complicated, but the basic idea is that one
must distinguish between visits to the origin by moving particles that would destroy a blockade
there, versus those that would not. Call such visits strong and weak, respectively At a key point in
the argument [1] it is important to compute the probability that the first arrival to the origin by
a right-moving particle occurs before the first left-moving particle to arrive. In TCBA, this has
probability 1/2 by symmetry. However, the reaction (1) makes it necessary to compare the first
strong visit and the first weak visit, which does not enjoy an obvious symmetry. An interesting
direction is to attempt to analyze this case, which appears to go beyond the “exactly solvable”
setting of [7] and [1].

Question 1. Estimate pc(a, b, x, y) in systems that include the reactions at (1).
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